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1. Introduction

The spectra of the radiated waterborne-noises of marine vessels are generally in two categories.
One is broad-band noise having a continuous spectrum. The other is line spectrum. The total
radiated signature is usually a combination of broad-band and line spectra. The nature of the
radiated noise spectra changes as the navigation speed changes. At high speed, the signature is
dominated by broad-band noise, while at low speed the signature is dominated by line spectra,
and the machinery is the leading noisemaker.

Insertion of resilient isolators between the machinery and the base is one of the most common
methods for controlling unwanted vibration. The isolators in service are usually assumed to be
linear and almost all the vibration isolation systems are designed with linear theory. The linear
vibration isolation system has vibration attenuation within a rather wide frequency range. But its
ability in line spectra reduction is limited. The superposition principle and frequency conservation
are the primary characteristics of the linear system. Namely, for sinusoidal input, the output is
also sinusoidal with the same frequency and therefore, the linear vibration isolation cannot
change the frequency spectra configuration of the radiated waterborne noise.

For the deficiency of the linear vibration isolators, nonlinear isolators were studied in some
literatures. However, the investigation was constrained to the periodic vibration. For example,
with the method of harmonic balance, B. Ravindra analyzed the harmonic response of a cubic
nonlinear vibration isolation system [1] and the performance of vibration isolators with
nonlinearity in both stiffness and damping under harmonic excitations [2].
see front matter r 2005 Elsevier Ltd. All rights reserved.

jsv.2004.12.018

ding author. Tel.: +86 27 83443233; fax: +86 27 83443990.

ress: jingjun_lou@hotmail.com (J.-j. Lou).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

J.-j. Lou et al. / Journal of Sound and Vibration 286 (2005) 645–652646
Since Ueda’s [3] work on Duffing’s equation, it is well known that nonlinear vibration systems
under harmonic excitation can exhibit chaotic responses [4–6]. However, the investigation on the
mechanism of chaos, rather than the study of isolation characteristic or the application of chaos in
vibration isolation, seems to be the main objective of the work in Refs. [4–6]. In spite of the
achievement in the application of the chaotic vibration mechanics to chaotic vibratory rollers [7],
it is neglected that vibration excitation and vibration isolation are two poles of vibration and no
efforts are made to make use of chaos in vibration isolation. The author tries to utilize the
characteristics of chaos to vibration isolation and a method of chaotic vibration isolation is
advanced for machinery vibration control and line spectra reduction. When chaos takes place in a
vibration isolation system with nonlinear isolator, the line spectra grow into a broad-band one.
Therefore, the frequency configuration of the radiated noise is altered. What is more important,
the concentrated energy spreads from the excitation frequency to a broad-band frequency range.
2. Route to chaos and scaling property of the power spectrum

As is known, nonlinear oscillating systems subject to external excitation can exhibit complex
regular behavior. The classical regular response includes primary, super-, sub-, ultrasubharmonic
resonances. These deterministic systems can also exhibit chaos, i.e. apparently random behavior
with extremely sensitive dependence on initial conditions. A very simple looking continuous
dynamical system, which nevertheless exhibits all these phenomena, is the Duffing system

€x þ d _x þ x þ x3 ¼ f cos ot. (1)

The eigenfrequency O of the Duffing system (1) depends on the excitation amplitude f and two
asymptotically orbitally stable solutions may coexist for a certain range of the excitation
frequency o. These properties lead to the well-known leaning over of the amplitude resonance
curve and to hysteresis jumps.

Every periodic solution xðtÞ of (1) can be expanded into Fourier series

xðtÞ ¼
X

x

xke
ikot. (2)

Duffing system (1) is a symmetrical one respect to x, that is, it preserves the form under the
transformation of x ! �x; t ! p=oþ t: For sufficiently small excitations the solution of (1)
should be also symmetrical. All Fourier coefficients xk in the Fourier series (2) do not vanish for
odd k 2 Z and coefficients with even k are all equal to zero. For excitation frequencies o below
the main resonance we therefore have a secondary resonance, whenever ko equals the amplitude
dependent eigenfrequency O of the system. And xk is called the superharmonic response.

If the excitation amplitude f is high enough the closed trajectory may lose its geometrical
symmetry. This is the so-called symmetry breaking bifurcation, caused by the non-zero of the even
Fourier coefficients. The symmetry breaking bifurcation may therefore be viewed as resonances
o ¼ O=k for even k 2 Z:

Parlitz [8] demonstrated that cascades of period-doubling bifurcation take place in the
parameter region, where the orbits have lost their symmetry. It can easily be shown that even
subharmonics, i.e. subharmonics whose period equals an even multiple of the excitation period,
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obtained from period-doubling bifurcations are always asymmetrical. Symmetry breaking is
therefore a prerequisite for period-doubling bifurcations. Further increase of the excitation
amplitude f, the period-doubling bifurcations accumulate and a sequence of chaotic attractors
appears.

For periodic solutions whose periods are equal to 2nT, where n ¼ 0; 1, 2,y and T ¼ 2p=o is
the excitation period, the power spectrum PðoÞ is a series of impulse function at frequencies
o0 ¼ mo=2n where m ¼ 1; 2,y 2n. Comparing the spectral lines in PðoÞ; we find that a new
spectral line in PðoÞ of the periodic 2n+1T solution bursts out between every two adjacent lines of
the periodic 2nT solution, that is, some new frequencies of o0 ¼ ð2m � 1Þo=2nþ1 come forth in the
periodic 2nþ1T solution. For the sake of calculation of the strength of spectral lines from period-
doubling bifurcation, PðoÞ can be written as

PðoÞ ¼
X1
n¼0

X2n�1

m¼1

Pn;md
2m � 1

2n o
� �

, (3)

where Pn, m is the strength of the mth spectral line from the nth period-doubling bifurcation.
Let

PðnÞ 

1

2n�1

X2n�1

m¼1

Pn;m (4)

denotes the mean strength of the spectral lines from the nth period-doubling bifurcation, and get
[9]

10 log
PðnÞ

Pðn þ 1Þ
¼ 13:21 dB: (5)

Eq. (5) indicates the descending of the power spectrum in the cascades of period-doubling
bifurcation, as shown in Fig. 1, where the distances between every two adjacent dashed lines are
equivalent. The new spectral lines from once period-doubling bifurcation is 13.21 dB less than that
from the previous bifurcation. The deeper the period-doubling bifurcation, the lower the power
lo
gP

(�
)

�

Fig. 1. Scaling property of the power spectra in the cascades of period-doubling bifurcations.
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spectrum and the more new frequencies appear. The period-doubling bifurcations accumulate
until chaos appears. By now n is very large, the peak values of the spectrum fall a lot, and the
power spectrum becomes continuous. The spectral broadening and spectral drop are hallmarks of
the onset of chaos. If the desired chaos in the nonlinear vibration isolation system is gained, the
line spectra reduction efficiency will be enhanced. From the viewpoint of energy, originally
centralized energy is distributed to a broad-band frequency range.
3. Chaotic vibration isolation and performance index

Frequency conservation is the main characteristics of the linear system, so for the linear
vibration isolation system with external sinusoidal excitation the energy transmitted to the base
via the linear isolator will still concentrate on the excitation frequency. The nonlinear oscillating
systems subject to external harmonic excitation can exhibit a great variety of harmonic responses,
even countless when chaos appears. The concentrated energy therefore spreads from the
frequency of excitation to a broad-band frequency range. For the given input energy into the
vibration isolation system, the response energy at the excitation frequency for the chaotic
vibration isolation system is much less than that for the linear vibration isolation system. So the
chaos method is a good candidate for the line spectrum reduction.

The approaches for the chaos method in eliminating the line spectrum are as follows:
(1)
 Build the dynamics model for the nonlinear vibration isolation system with respect to the
nonlinear isolator, and determine the numeric area of the stiffness and damping where the
desired chaos appears.
(2)
 Determine the technically feasible approach to control the stiffness and damping to the
chaotic parameter area.
(3)
 Chaos is realized and the line spectrum is suppressed.
For a linear vibration isolation system the force transmissibility is used to evaluate the
effectiveness of vibration isolation. In a nonlinear system, however, a harmonic response
with the same frequency as that of the excitation is not guaranteed. The response may
contain subharmonics and superharmonics, and sometimes the response may even be
chaotic. Hence, the force transmissibility makes no sense in the nonlinear vibration system and
the problem of defining a suitable performance index for the nonlinear isolator is encountered.
A working index defined as the ratio of the rms values of the response vs. the excitation
may be used:

T ¼
ffiffiffiffiffiffiffiffiffiffiffi
E½y2�

p . ffiffiffiffiffiffiffiffiffiffiffi
E½x2�

p
, (6)

where E½x2� and E½y2� denote the rms values of the excitation and response, respectively. This
index shows the energy transmission relationship and it is easy to calculate and measure.

Expressed with decibel, Eq. (6) becomes

L ¼ 20 log
RMSðyÞ

RMSðxÞ
, (7)
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where RMSð
Þ ¼
ffiffiffiffiffiffiffiffiffiffi
E½
2�

p
: In practice, the acceleration is easy to measure. Therefore, x and y are

the acceleration at the upside and bottom of the isolator, respectively. L in Eq. (7) then becomes
the drop of the acceleration vibration level.

This working index can evaluate the overall vibration isolation performance, however, it is
devoid of any information about the response frequency content and cannot indicate the
weakening of the line spectrum. One of the most advantages of the chaotic vibration isolation lies
in isolating the line spectrum. To indicate the reduction of the line spectrum, another index, the
difference between the power spectra of the response and the excitation at the excitation
frequency, should be used.
4. Experiment

To validate the effectiveness of the method of chaotic vibration isolation, an experiment system
is designed. The vibration excitor in the experiment is shown in Fig. 2. The motor 1 and gear
wheels 2 drive the eccentric blocks 4 to reverse rotary. The excitation forces in the horizontal
direction are balanced, leaving only the vertical force. The vibration excitor is supported by 4
pieces of hard Duffing-type vibration isolators whose stiffness can be adjusted through charge and
blowoff. The experimental data is collected and analyzed with the Pimento Data Collecting
System from the LMS Company. On both the upside and bottom of each isolator are accelerator
sensors. Through the change of the revolution speed of the motor, the mass of the eccentric
blocks, and the eccentricity, the excitation amplitude and frequency can be adjusted. The
acceleration spectrogram is observed for real time. If the spectrogram is continuous, it should be
initially estimated that chaos might occur. Further analysis of the time-series data, including
phase space reconstruction, the maximal Lyapunov exponent, and the fractal dimension, can
exactly judge whether the system is chaotic or not.

Fig. 3 shows the bifurcation diagram for the rotate speed n ¼ 1260 rev=min; namely, the
excitation frequency o ¼ 21Hz: To obtain the diagram the excitation amplitude f has been
increased from 0 to 25N and the Poincaré map of the response is plotted. A Poincaré map is
Motor
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4

Fig. 2. Vertical vibration excitor: 1, motor; 2, gear wheel; 3, locknut; 4, eccentric block; 5, bearing.
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Fig. 3. Bifurcation diagram.
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simply a stroboscopic phase plane plot that only records those phase points at intervals of a
forcing period. The Poincaré map of an NT (T ¼ 2p=o) response is N points.

Two cascades of period-doubling bifurcations are observed before the chaos occurs, as shown
in Fig. 3. When fo1.2 N, the response has the same period as that of the excitation, namely,
period 1T solution. When f ¼ 1.2 N, a response of period 2T is observed after once period-
doubling bifurcation. Unlike the classical nonlinear system in numerical simulation, however, this
period-doubling bifurcation does not accelerate as the excitation amplitude increases, and instead
it is broken by another cascade of period-doubling bifurcation which originates from a 6T

periodic response at f ¼ 13.6N. Then it becomes a response of period 12T at f ¼ 14.7N.
Thereafter, the first period-doubling bifurcation comes back at f ¼ 15.1N where the response is of
period 2T. Further increase of the excitation amplitude f leads to deeper bifurcation cascades,
responses of period 4T and 8T at f ¼ 15.6N and 17.8N, respectively. Further cascades of period-
doubling bifurcations do not take place and chaos occurs when 18.3ofo21.9. Finally, the system
rests on period 1T motion.

Fig. 4(a) is the spectrogram of the acceleration from the upside and bottom of one isolator
when f ¼ 20N and o ¼ 21Hz: In spite of some sharp spectral lines there are many continuous
part of the spectrum. It is very likely that chaos has occurred. To verify the onset of chaos, delay
reconstruction is established, and the reconstructed attractors are shown in Fig. 5(a) and (b). We
can see the apparent ‘‘strange’’ characteristic in the reconstructed attractors. Because of the
stretch and folding, the attractors have infinite cascades of self-similarity. Lyapunov exponents
have proven to be the most useful dynamical diagnostic for chaos. With the algorithm proposed
by Wolf [10], the maximal Lyapunov exponents of the two reconstructed attractors in Fig. 5 are
estimated 1.4308 and 0.8276, respectively. We can conclude that the motion of the system is
chaotic. Fig. 4(b) is the spectrogram of the acceleration from the upside and bottom of one
isolator when f ¼ 16N and o ¼ 20Hz: The spectral lines are apparent at the excitation frequency.
Further data analysis demonstrates that the motion of the system is periodic.



ARTICLE IN PRESS

Fig. 4. Spectrogram of the acceleration from the upside and bottom of the isolator: (a) chaotic; (b) non-chaotic.
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Fig. 5. Reconstructed strange attractors: (a) acceleration from the upside of the isolator; (b) acceleration from the

bottom of the isolator.
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As shown in Fig. 4(a), the power spectrum of the accelerator from the upside of the isolator at
the excitation frequency of 21Hz is 48.7204 dB, and that from the bottom of the isolator is
�14.0744 dB. The drop in level is 62.7948 dB. In Fig. 4(b), the power spectrum of the accelerator
from the upside of the isolator at the excitation frequency of 20Hz is 35.5900 dB, and that from
the bottom of the isolator is –4.8902 dB. The fall is 40.4802 dB. Thus, it can be seen that the
reduction of the line spectra when the system is chaotic is much greater than that when the system
is non-chaotic.

In terms of Eq. (7), the drop of the acceleration vibration level is 57.4369 dB when f ¼ 20N and
o ¼ 21Hz; and 39.9486 dB when f ¼ 16N and o ¼ 20Hz: This shows that the overall
effectiveness of vibration isolation at chaos is also better than that at non-chaos.
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5. Conclusion

For the sake of reduction of line spectra in the radiated acoustical signature of marine vessels,
the method of chaotic vibration isolation is advanced. This work is one of the few efforts to apply
the chaos in engineering. Starting with the route to chaos and the scaling property of the power
spectrum in the cascade of period-doubling bifurcations, the principle of the method of chaotic
vibration isolation is derived. Two performance indices for the method presented in this paper, the
ratio of the rms values of the response vs. the excitation and the difference of the power spectra
between the response and the excitation at the frequency of line spectra, are also given. The
presented method is experimentally verified. Experiment results show that the reduction of the line
spectra when the system is chaotic is much greater than that when the system is non-chaotic, and
that the overall effectiveness of vibration isolation at chaos is better than that at non-chaos.
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